Abstract

The objective of this study was to analyse retrieved human femoral bone samples using three different test methods, to elucidate the relationship between bone mineral density and mechanical properties. Human femoral heads were retrieved from 22 donors undergoing primary total hip replacement due to hip osteoarthritis and stored for a maximum of 24 hours postoperatively at + 6 °C to 8 °C.

Analysis revealed an average structural modulus of 232±130 N/mm2 and ultimate compression strength of 6.1±3.3 N/mm2 with high standard deviations. Bone mineral densities of 385±133 mg/cm2 and 353±172 mg/cm3 were measured using thedual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), respectively. Ashing resulted in a bone mineral density of 323±97 mg/cm3. In particular, significant linear correlations were found between DXA and ashing with r = 0.89 (p < 0.01, n = 22) and between structural modulus and ashing with r = 0.76 (p < 0.01, n = 22).

Thus, we demonstrated a significant relationship between mechanical properties and bone density. The correlations found can help to determine the mechanical load capacity of individual patients undergoing surgical treatments by means of noninvasive bone density measurements.

Keywords:: Human trabecular bone, femoral head, bone mineral density, mechanical properties.
Fulltext HTML PDF
1800
1801
1802
1803
1804