All published articles of this journal are available on ScienceDirect.

RESEARCH ARTICLE

Use of Carboxymethyl Cellulose and Collagen Carrier with Equine Bone Lyophilisate Suggests Late Onset Bone Regenerative Effect in a Humerus Drill Defect – A Pilot Study in Six Sheep

The Open Orthopaedics Journal 11 May 2010 RESEARCH ARTICLE DOI: 10.2174/1874325001004010181

Abstract

We assessed the use of a filler compound together with the osteoinductive demineralized bone matrix (DBM), Colloss E. The filler was comprised of carboxymethyl-cellulose and collagen type 1. The purpose of the study was to see if the filler compound would enhance the bone formation and distribute the osteoinductive stimulus throughout the bone defect. Six sheep underwent a bilateral humerus drill defect. The drill hole was filled with a compound consisting of 100 mg CMC, 100 mg collagen powder, and 1 ccm autologous full blood in one side, and a combination of this filler compound and 20 mg Colloss E in the other. The animals were divided into three groups of two animals and observed for 8, 12 and 16 weeks. Drill holes was evaluated using quantitative computed tomography (QCT), micro computed tomography (µCT) and histomorphometry. Mean total bone mineral density (BMD) of each implantation site was calculated with both QCT and µCT. Bone volume to total volume (BV/TV) was analyzed using µCT and histomorphometry. Although not statistically significant, results showed increased bone BMD after 16 weeks in µCT data and an increased BV/TV after 16 weeks in both µCT and histology. Correlation between QCT and µCT was R2 = 0.804. Correlation between histomorphometry and µCT BV/TV data was R2 = 0.8935 and with an average overrepresentation of 8.2% in histomorphometry. In conclusion the CMC-Collagen + Colloss E filler seems like a viable osteogenic bone filler mid- to long term. A correlation was found between the analytical methods used in this study.

Keywords: Collagen, histomorphometry, equine bone lyophilisate, cellulose.
Fulltext HTML PDF
1800
1801
1802
1803
1804