RESEARCH ARTICLE


Application of Autologous Bone Marrow Derived Mesenchymal Stem Cells to an Ovine Model of Growth Plate Cartilage Injury



Rosa C McCarty1, 2, 3, Cory J Xian*, 1, 2, 4, Stan Gronthos3, 5, Andrew C.W Zannettino3, 5, Bruce K Foster1, 2
1 Department of Orthopaedic Surgery, Women’s & Children’s Hospital, Adelaide, Australia
2 Department of Paediatrics, University of Adelaide, Australia
3 Division of Haematology, Hanson Institute, Institute of Medical and Veterinary Science, Adelaide, Australia
4 Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
5 Department of Medicine, University of Adelaide, Australia


Article Metrics

CrossRef Citations:
35
Total Statistics:

Full-Text HTML Views: 464
Abstract HTML Views: 265
PDF Downloads: 95
Total Views/Downloads: 824
Unique Statistics:

Full-Text HTML Views: 234
Abstract HTML Views: 124
PDF Downloads: 87
Total Views/Downloads: 445



Creative Commons License
© McCarty et al.; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Sansom Institute, School of Pharmacy & Medical Sciences, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA 5001, Australia; Tel: (618) 8302 1944; Fax: (618) 8302 1087; E-mail: cory.xian@unisa.edu.au


Abstract

Injury to growth plate cartilage in children can lead to bone bridge formation and result in bone growth deformities, a significant clinical problem currently lacking biological treatment. Mesenchymal stem/stromal cells (MSC) offer a promising therapeutic option for regeneration of damaged cartilage, due to their self renewing and multi-lineage differentiation attributes. Although some small animal model studies highlight the therapeutic potential of MSC for growth plate repair, translational research in large animal models, which more closely resemble the human condition, are lacking. Our laboratory has recently characterised MSCs derived from ovine bone marrow, and demonstrated these cells form cartilage-like tissue when transplanted within the gelatin sponge, Gelfoam, in vivo. In the current study, autologous bone marrow MSC were seeded into Gelfoam scaffold containing TGF-β1, and transplanted into a surgically created defect of the proximal ovine tibial growth plate. Examination of implants at 5 week post-operatively revealed transplanted autologous MSC failed to form new cartilage structure at the defect site, but contributed to an increase in formation of a dense fibrous tissue. Importantly, the extent of osteogenesis was diminished, and bone bridge formation was not accelerated due to transplantation of MSCs or the gelatin scaffold. The current study represents the first work that has utilised this ovine large animal model to investigate whether autologous bone marrow derived MSC can be used to initiate regeneration at the injured growth plate.

Keywords: Mesenchymal stem cell, bone marrow, ovine, growth plate, tissue engineering.