EDITORIAL

Clinical and Radiographic Features of Phalangeal Osteoid Osteoma

N. K. Sferopoulos¹

¹Department of Orthopaedic Surgery, Aristotle University of Thessaloniki, ‘G. Gennimatas’ Hospital, 546 35, Thessaloniki, Greece

The Open Orthopaedics Journal
Content list available at: https://openorthopaedicsjournal.com

Article History
Received: March 23, 2021
Revised: May 25, 2021
Accepted: June 1, 2021

EDITORIAL

The purpose of this editorial is to perform an extensive review of the relevant international literature about the clinical and radiographic features of phalangeal osteoid osteomas of the hand or foot, to indicate the value of clinical suspicion for the early diagnosis since they commonly appear with atypical findings, and to present four illustrative cases, two adults and two children.

Osteoid osteoma is a benign osteoblastic tumor of unknown origin. It usually affects children, adolescents and young adults showing a strong male predominance. The tumor has a predilection for the metaphysis or diaphysis of long bones of the lower limbs but it may occur anywhere in the skeleton. It typically consists of a well-demarcated radiolucent rarefied area of bone-forming and prostaglandin-secreting nidus, occupying the midcortex, which is surrounded by an extensive fusiform reactive sclerotic host bone. Reactive sclerosis is usually more pronounced in children. The lesion may also be found in the medulla (spongiosa) of bone. In the cortical presentation, it may rarely occupy the endosteal or subperistele surface of the cortex. Intramedullary tumors are usually surrounded by a thin rim of reactive sclerosis and may frequently be periarticular or intraarticular, presenting with synovitis and joint effusion [1 - 10].

Approximately 10% of osteoid osteomas involve the hand. Of them, 6% occur in the phalanges, 2% in the metacarpals and 2% in the carpal bones. Cortical localization of the tumor is usually seen in the phalanges and metacarpals, while intramedullary lesions are usually encountered in the carpal bones [11 - 23]. In the fingers, the proximal phalanx is the most typically affected site, while lesions of the distal phalanx are rarely encountered. The index finger is the most commonly involved digit, while the thumb is the least affected one [24 - 41]. Phalangeal lesions of the foot account for about 2% of all cases [42 - 47].

In an accessible bone, swelling over an osteoid osteoma is a typical finding. In a phalangeal osteoid osteoma, swelling may be localized or generalized, resembling dactylitis or macrodactyly. Whenever the lesion affects the terminal phalanx, enlargement of the entire fingertip, producing clubbing, appears to be very likely [24, 41, 48 - 54]. The presentation of clubbing in a digit should raise the suspicion of a bone tumor, even when plain radiographs show only soft tissue swelling or vague radiographic changes [55]. Both the enlargement of the finger and the hypertrophy of the nail may be explained by the increased focal vascularity [49]. Osteoid osteomas localized in the subungal area have also been reported [56]. An accompanying erythema of the overlying skin may rarely be detected. Cases associated with either erythema or nail deformities may easily mislead the diagnosis [57 - 59].

Nocturnal pain and exquisite tenderness over the site of the nidus are the most constant clinical features of phalangeal osteoid osteomas of the hand or foot. Pain is unrelated to use or motion and it may precede the radiographic changes by many months [60]. The severity of pain may increase gradually, so that it may take months or even more than a year before a patient seeks medical advice. The pain is typically worse at night and is usually relieved by small doses of acetylsalicylic acid (aspirin) or nonsteroidal anti-inflammatory drugs (NSAIDs). The use of both may be gradually less effective in reducing pain to an acceptable level. On occasions, pain may not be worse at night or may not be relieved at all by these medications. The appearance of an atypical type of pain (dull, vague or diffuse) and the absolute lack of pain are exceptionally rare in non-phalangeal osteoid osteomas. Painless osteoid osteomas appear in the digits more frequently than in any other skeletal location [56, 61 - 64]. Vasomotor disturbances, namely increased skin temperature in the affected region, and profuse digital tip perspiration or reflex sympathetic dystrophy have also been reported [48].

A common diagnostic problem of juxtaarticular or intraarticular phalangeal osteoid osteomas is that they may
Magnetic Resonance Imaging (MRI) will demonstrate the soft tissue and bone marrow edema but is rarely needed, because CT both better demonstrates the nidus and aids in differentiating between the nidus and reactive bone. The use of angiography may also result in improved recognition of the nidus [75, 91 - 94]. Atypical histological features may also be often encountered in phalangeal osteoid osteomas in both children and adults, such as ill demarcation between the nidus and reactive bone, and absence of dense reactive bone surrounding the nidus [55, 95 - 102].

The main differential diagnosis in a patient with a painful fingertip swelling may include whitlow or paronychia, osteomyelitis, glomus tumour, subungual exostosis, osteochondroma, enchondroma, osteoid osteoma, and arthritis [29, 50, 55, 56, 59]. In addition, in cases with a painful nontraumatic swelling of the proximal or middle phalanx differential diagnosis includes soft tissue lesions, bone abscesses and osteomyelitis of acute or chronic sclerosing types, monoarticular rheumatoid arthritis, enostosis (bone island), stress fracture, benign bone tumors, and malignancy [23, 30, 78, 79, 103, 104].

There has been no report of malignant transformation of this neoplasm so far. A complication of phalangeal osteoid osteoma, which has rarely been reported, is premature physeal fusion [49, 105, 106]. In a two children report, in the one of them local damage to the phalangeal physis plate by the lesion could be excluded [107]. Therefore, other etiological factors were considered, such as the local increase in vascularity or the regional osteoporosis [108], in a similar way that they were encountered in epiphyses around the knee in treated tuberculosis of the hip [109]. Distant recurrence of the tumor is extremely rare with only one reported case [110]. Local recurrence of the clinical symptoms and a new nidus will form following inadequate treatment [91, 111, 112]. Cases localized in a juxtacortical area of the articular surface that necessitate removal of an articular area are more prone to complications [75].

Four patients with a histologically proven phalangeal osteoid osteoma of a finger or toe are presented. The clinical findings were assessed for localized or generalized swelling, for the presence/type of pain and for interphalangeal arthritis associated with decreased ROM. The evaluated radiographic features were identification of a radiolucent nidus, internal matrix within the nidus, sclerosis surrounding the nidus, periosteal reaction, periosteal/cortical sclerosis, and cortical erosion.

There were two adult male patients, 21 (patient 1) and 23 (patient 2) years of age, respectively in Figs. (1 and 2). Two children, a 12-year-old boy (patient 3) and a 13-year-old girl (patient 4) were also identified (Figs. 3 and 4). In the two adult patients, the tumor involved the thumb and middle finger, respectively. In the two children, the great toe and the index finger were involved, respectively. The tumor was localized in the distal portion of the proximal phalanx in all cases. Swelling, pain and local tenderness were the presenting symptoms. Swelling was localized in 3 patients and generalized, in the form of dactylitis, only in patient 1. The cardinal feature of night pain as well as local tenderness over the nidus was evident in all cases. However, complete relief of pain with the use of aspirin or other NSAIDs was noted only in patient 1. No erythema or local increase in temperature was
detected in any of the patients. The adjacent proximal interphalangeal joint was very tender and had limited ROM in all cases. Precise localization of the nidus was determined in patients 1, 2 and 3 with conventional radiography and in patient 4 with MRI. An intracortical localization of the nidus was noted in patients 2 and 3, while an intramedullary one was noted in patients 1 and 4. A distinctive area of sclerosis surrounding the lytic lesion was seen only in the adult patients. Minimal and absent sclerosis were evident in patients 3 and 4, respectively. Internal sclerosing matrix within the nidus and the ring sequestrum sign were evident on the radiographs in the adult patients, while in patients 3 and 4, both findings were delineated with the use of CT and MRI, respectively. Cortical/periosteal sclerosis was present in patients 1, 2 and 4. Cortical erosion as well as local osteopenia was not identified in any of the patients.

Fig. (1). A 21-year-old man with a 12-month history of painful swelling of the left thumb. Anteroposterior and lateral radiographs showed an intramedullary lytic lesion in the distal portion of the proximal phalanx of the thumb. Internal sclerosing matrix was evident within the lesion. A broad zone of reactive bone surrounded the lesion. Periosteal as well as cortical sclerosis of the proximal phalanx of the thumb was also noted.

Fig. (2). A 23-year-old man with an 18-month history of a painful swelling in the proximal phalanx of the right middle finger. Anteroposterior and lateral radiographs indicated a lytic lesion in the distal part of the radial cortex of the proximal phalanx of the middle finger. Its center was almost completely occupied by sclerosing matrix. A broad zone of reactive bone surrounded the lesion. Periosteal as well as cortical sclerosis of the distal, radial cortex of the proximal phalanx of the middle finger was also evident.

The clinical and the radiographic findings in both adult patients indicated the diagnosis of a phalangeal osteoid osteoma. However, the clinical and radiographic evaluation in both children yielded nonspecific results. Thus, the diagnosis of osteomyelitis could not be excluded in patient 3, while in patient 4 the findings were not sufficient to make a differential diagnosis from osteomyelitis or malignancy.

CONCLUSION

It has strongly been emphasized in the literature that phalangeal osteoid osteoma may commonly present with atypical clinical and/or radiographic findings in both adults and children. In such cases, clinical suspicion remains the most sensitive indicator for diagnosis. Furthermore, imaging evaluation including conventional tomography, bone scintigraphy, CT, which has the highest specificity, and MRI is mandatory in patients presenting with atypical or no radiographic findings as well as in patients with atypical clinical findings, such as a phalangeal painless swelling, clubbing of the fingertip, dactylitis or macrodactyly, and monoarticular interphalangeal arthritis. Awareness of the potential atypical clinical and/or radiographic characteristics of the phalangeal osteoid osteoma of the hand or foot may lead to earlier diagnosis and treatment in both adults and children.

FUNDING

None.
CONFLICT OF INTEREST

The author declares no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES


Clinical and Radiographic Features of Phalangeal Osteoid Osteoma

The Open Orthopaedics Journal, 2021, Volume 15

[http://dx.doi.org/10.1177/10711079001000609] [PMID: 9670873]

[http://dx.doi.org/10.1016/j.foas.2009.12.003] [PMID: 21660827]

[http://dx.doi.org/10.1007/978-3-540-79984-1_14] [PMID: 15552158]


[http://dx.doi.org/10.1007/s00256-011-1218-z] [PMID: 21660827]

[http://dx.doi.org/10.1016/j.main.2006.02.001] [PMID: 16841767]

[http://dx.doi.org/10.1007/b970520-00006423-197052070-000089] [PMID: 1907944]

[http://dx.doi.org/10.1016/j.sjmsd.2006.02.006] [PMID: 16473697]

[http://dx.doi.org/10.1016/j.jhandsurg.2019.06.017] [PMID: 31435709]

[http://dx.doi.org/10.1016/j.jhandsurg.2006.06.012] [PMID: 16841767]

[http://dx.doi.org/10.1007/s00256-011-1218-z] [PMID: 21660827]


[http://dx.doi.org/10.1016/j.main.2006.02.001] [PMID: 16841767]

[http://dx.doi.org/10.1007/s00256-011-1218-z] [PMID: 21660827]

[http://dx.doi.org/10.1177/10711079001000609] [PMID: 9670873]

[http://dx.doi.org/10.1016/j.foas.2009.12.003] [PMID: 21660827]


[http://dx.doi.org/10.1016/j.jhandsurg.2006.06.012] [PMID: 16841767]

[http://dx.doi.org/10.1007/s00256-011-1218-z] [PMID: 21660827]


[http://dx.doi.org/10.1016/j.sjmsd.2006.02.006] [PMID: 17308432]

[http://dx.doi.org/10.1007/978-3-540-79984-1_14] [PMID: 15552158]

[http://dx.doi.org/10.1016/j.jhandsurg.2006.06.012] [PMID: 16841767]

[http://dx.doi.org/10.1177/10711079001000609] [PMID: 9670873]

[http://dx.doi.org/10.1016/j.foas.2009.12.003] [PMID: 21660827]


[http://dx.doi.org/10.1016/j.jhandsurg.2006.06.012] [PMID: 16841767]


