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Abstract: The use of bioengineering scaffolds remains an integral part of the tissue engineering concept. A significant 

amount of basic science and clinical research has been focused on the regeneration of musculoskeletal tissues including 

bone, articular cartilage, meniscus, ligament and tendon. This review aims to provide the reader with a summary of the 

principals of using material scaffolds in musculoskeletal tissue engineering applications and how these materials may 

eventually come to be incorporated in clinical practice. 
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 Tissue Engineering (TE) is the use of a combination of 
engineering, materials and cells to improve or replace 
biological functions. TE solutions are usually, but not 
always, based upon a scaffold (synthetic and/or biological), 
alone or in combination with precursor or specialist cell 
types and may include modifications such as the inclusion of 
bio molecules [1]. In recent years increasingly more 
complicated structures are being created and tested in the 
quest to find the ‘ideal’ analog to replace or encourage repair 
of the damaged tissue. The aim of this review is to provide 
an overview of the use of scaffolds in musculoskeletal TE. 

Which Musculoskeletal Tissue Repair Might Benefit 
From the Use of Scaffolds? 

 Scaffolds can potentially enhance the repair or 
replacement of any of the tissues in the musculoskeletal 
system for a variety of reasons. Some of the tissues in the 
musculoskeletal system have a poor intrinsic repair capacity. 
For example, cartilage is notoriously poor at healing [2]; it 
has a slow rate of turnover and very limited capacity to 
repair defects. It is well recognized that partial thickness 
cartilage defects do not really heal at all, and that full 
thickness defects heal by recruitment of bone marrow 
derived stem cells from the underlying bone, often to form 
poor quality, disorganized fibrocartilage instead of the 
required hyaline cartilage [3]. However, even marrow 
progenitor cell recruitment can only heal osteochondral 
lesions up to critical sizes [4], beyond which defects in the 
articular surface remain. Scaffolds might therefore represent 
an excellent strategy to assist healing of both chondral and 
osteochondral lesions. 

 Tendons, menisci and ligaments are also considered to 
have relatively poor healing compared to most tissue types 
[5], although their healing is not as poor as cartilage. Similar 
also to cartilage, damaged tendon and ligament is often 
repaired by disorganized, weaker tissue which is prone to re-  
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injury [6] and the use of scaffolds to promote more 
functionally appropriate healing would be highly 
advantageous. 

 In contrast to these tissues, bone and muscle have 
excellent healing capacities and are usually able to achieve 
an effective repair [7]. However, in some circumstances even 
these tissues are not able to completely repair. For example, 
bone repair can be poor for a number of reasons resulting in 
delayed and non unions [8]. In large defects created during 
the treatment of bone or muscle neoplasia there may simply 
be too big a physical gap for normal healing to bridge [7]. In 
each of these clinical challenging scenarios, scaffolds 
represent an excellent strategy to assist healing by providing 
a support structure for cells, a source of cells and/or 
biological factors or a combination of all of these. 

What Makes a Good Scaffold? 

 Scaffolds designed for use in musculoskeletal TE should 
meet several criteria [9] including: 

1. They should be biodegradable and biocompatible – 
the scaffolds must be able to be absorbed by the tissue 
once the functional life of the scaffold is reached or 
integrated into the tissue. 

2. The scaffold should not promote and inflammatory or 
immune response in the tissue. 

3. The scaffold surface and porosity should permit cell 
adhesion and growth and permit the expression of the 
appropriate cellular phenotype. 

4. The material should have the mechanical properties 
required to withstand the biological demands made 
upon it during the reparative period. 

5. The material must be able to be produced 
reproducibly. 

6. The scaffold must be able to be supplied sterile, in an 
appropriate size for surgical placement. 

7. The scaffold should have good handling properties 
i.e. are able to be trimmed to fit defects and be 
amenable to manipulation with surgical instruments. 
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EVALUATION OF SCAFFOLDS 

 Many different scaffolds exist, at all stages of 
development from initial material description through to 
completed clinical trials. Given the rapidly expanding 
literature in this area, how can the clinician objectively 
evaluate the data that is generated from the testing of 
potential scaffolds? The development and use of a scaffold 
intended for TE falls into four broad categories; the 
production of the scaffold material itself, in vitro 
biocompatibility testing, pre-clinical trials in animal models 
(small and large animal [10]) and human clinical trials. Thus, 
at any one time scaffolds are at different stages of the 
evaluation procedure, making it difficult to compare the 
effectiveness of any given scaffold against its ‘competitors’ 
(i.e. scaffolds of different structure intended eventually for 
the same clinical use). In truth, a scaffold can only ever be 
fully evaluated at the end of a significant number of patient 
treatments and all intermediate data, while of interest, is 
merely a guide to potential performance in vivo. 

1. Materials 

 The most common and simple scaffolds that have been 
used for decades are patients own tissue (auto graft) or 
cadaveric donor tissue (allograft). Autograft such as 
hamstring tendons or the patella tendon have been 
incorporated in anterior cruciate ligament reconstruction 
since the 1960’s. [11]. Studies have shown host tissue 
infiltration (ligamentization) by approximately 12 weeks 
[12]. Similarly allograft has also been used for the same 
purpose, often taking slightly longer to incorporate. The 
treatment of bone fracture non-union has been treated 
extensively with bone autograft, often being harvested from 
the iliac crest. Not only does this scaffold provides structural 
osteoconductive support, but also lends itself to having 
osteoinductive and osteogenic properties. However, donor 
site morbidity has led many clinicians to use allograft which, 
due to its processing and storage, only have osteoconductive 
properties [13]. As a result, in the past two decades a great 
emphasis has been placed on the production of ‘off the shelf’ 
scaffolds’ which can be used to treat bone, but also ligament, 
tendon and cartilage. 

 Some of the earliest well described scaffolds were made 
of relatively simple synthetic materials, for example 
polyethylene meshes [14, 15], carbon implants [16] or 
carbon-polylactic acid (CPA) polymers [17-19]. However, 
since these early materials were used, there has been much 
development of biologic and synthetic materials and 
combinations thereof. 

 Biological scaffolds may be classified as to the 
predominant type of material used e.g. protein or 
carbohydrate. The most common protein derived scaffolds 
are those made from collagen. Examples include Matrix 
Assisted Chondrocyte Implantation (MACI, Genzyme Inc., 
Oxford, UK) which utilizes a collagen type I/III 
scaffold/membrane to culture chondrocytes ex-vivo prior to 
implantation into an articular cartilage defect [20]. Whilst the 
use of collagen alone as a scaffold has been shown to be a 
successful strategy, collagen has also been successfully 
combined with other biological materials to form 
commercially available tissue repair systems. The addition of 
a ceramic such as calcium phosphate has been used in a 

number of osteochondral scaffolds including 
Chondromimetic (Tigenix, Cambridge, UK) and Maioregen 
(Finceramica, Italy). The ceramic alone can be used as a 
scaffold, such as porous Hydroxyapatite as a bone graft 
substitute (Apapore, Baxter Healthcare, Deerfield IL). This 
has been in a number of clinical trials with satisfactory 
outcome [21]. Other naturally occurring substances in 
cartilage have been added to collagen to help mimic the 
extracellular matrix, such as chondroitin sulphate in the 
Novocart 3D (Tetec, Germany) in which autologous 
chondrocytes are combined with a 3D collagen/chondroitin 
sulphate scaffold. 

 Carbohydrate based scaffolds include hyaluronic acid, 
which has been incorporated in Hyalograft C (Hyaff-11, Fida 
Advanced Biopolymers, Abano Terme, Italy). This is 
another naturally occurring material in cartilage and 
therefore represents a biological treatment option. The BST-
Cargel system (Bio-Syntec Inc., Canada) utilizes a chitosan 
based scaffold infused with uncoagulated whole blood prior 
to implantation into a microfracture lesion [22]. Chondron 
(Sewon Cellontech, Korea) is a commercially available 
fibrin gel based autologous chondrocyte implantation device 
[23]. Fibrin has also been used as a tissue glue (Tisseel, 
Baxter, US), which has been used to form a biological 
scaffold to contain embryonic derived pluripotent cells and 
used to treat ovine osteochondral lesions [24]. 

 Whilst biological materials are widely used as scaffolds 
in musculoskeletal TE synthetic materials are also well 
suited for use as scaffolds as they can be produced 
reproducibly, are relatively easily modified (both structurally 
and chemically) and have a minimal risk of provoking an 
immune response in the host. Since the development of the 
original synthetic scaffolds, a new generation of 
bioabsorbable synthetic materials have been investigated for 
their potential use as scaffolds. These new materials include 
polylactides, polyglycolides, polydioxanone, e-caprolactone, 
polycarbonates and their copolymers [25-32]. A number of 
synthetic musculoskeletal TE solutions are commercially 
available for use. In the Bioceed-C system (BioTissue, 
Germany), chondrocytes are seeded into a biodegradable 
polyglycolic/polylactic acid/polydioxanane based polymer 
fleece [33]. Scaffolds can also be used to support cartilage 
fragment implantation as well as cellular therapy. In a 
recently described cartilage autograft implantation system 
model, autologous cartilage fragments were added to a 
polydioxanone scaffold for implantation into chondral 
lesions [34]. In osteochondral lesion repair the use of the 
Trufit (Smith and Nephew Endoscopy, Andover, MA) plug 
(a multiphasic implant consisting of polyglycolic acid and 
poly-D-L-lactic-co-glycolide fibres plus 10% calcium) has 
produced good clinical results over reasonably extended 
recovery timescales in patients [35] and a polyurethane 
meniscal scaffold has shown promising results as a meniscal 
replacement in pre-clinical trials (Actifit, Orteq, US) [36] 
and in a more recent clinical study [37]. 

 In addition to these synthetic and biological scaffold 
developments, a number of synthetic/biological composite 
scaffolds have been developed, such as bioglass-collagen-
phosphatidylserine scaffolds [38], collagen/PLA composites 
[39] and bioactive glass/polycaprolactone/biphasic calcium 
phosphate scaffolds [40], many of which are in the earliest 
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stages of biocompatibility testing and on whom relatively 
little data is currently available for evaluation. However, one 
hybrid scaffold, Osseofit, (Kensey Nash Corporation, USA) 
is commercially available for use as a bone void filler model 
in pre-clinical trials [9]. This biphasic scaffold is composed 
of a type I collagen chondral layer and a beta tricalcium 
phosphate ceramic suspended in a polylactic acid lattice. 

2. Biocompatibility Testing 

 Once a material has been identified suitable for a scaffold 
then biocompatibility testing (testing the ability of the 
scaffold to support cell growth and function in vitro) is 
undertaken. The majority of scaffolds are, at some point in 
their development, assessed for their ability to support the 
growth of multipotential cells. The most commonly 
described cell type grown on scaffolds for musculoskeletal 
TE is the mesenchymal stem/progenitor cell (MSC), which 
may be harvested from many musculoskeletal tissues but 
most commonly from bone marrow [41-43]. More recently, 
MSC’s have been sourced from human embryonic stem cells 
[44]. MSCs can differentiate into any of the cell types of the 
musculoskeletal system when induced by the appropriate in 
vitro or in vivo cues [43, 45] - the ability of the scaffold to 
support cells that can become any of the differentiated cells 
of the musculoskeletal systems may indicate the broad 
potential of the scaffold as a cellular support. 

 More specific biocompatibility testing examines to what 
extent the scaffold can support the differentiated cell type 
that it is intended to ‘host’ in vivo. Thus in simple 
experimental systems meniscal scaffolds are tested with 
fibroblasts of meniscal origin [46, 47], chondral scaffolds 
with chondrocytes [48-50], tendon scaffolds with tenocytes 
[51, 52] and so on. However, single cell experiments, whilst 
informative, do have their limitations. The musculoskeletal 
tissues are complex. They may be multicellular, containing 
specialized niches (bone [53]) or composed of cellular sub-
types with different properties (cartilage) [54, 55]. They all 
have inter-tissue regional variations of mechanical stresses 
and strains, extracellular matrix components and other tissue 
interfaces [56], which a single cell experiment does not 
replicate. Thus more complicated biocompatibility assays are 
devised to test the efficacy of a scaffold. For example, 
seeding chondrocytes and fibroblasts inside and outside a 
meniscal scaffold [57]; seeding osteoblasts and fibroblasts 
onto a ligamentous scaffold [58]; seeding osteoblasts/ 
endothelial cells on DegraPol (AbMedica, Italy) foam 
scaffolds in a chick chorioallantoic bone graft model [59]; 
and, in a highly complex series of experimental steps, 
seeding chondrocytes, osteoblasts and fibroblasts onto a 
single scaffold in order to provide the cell types required to 
fully heal an anterior cruciate ligament (ACL) rupture [58, 
60-62]. Assessing how cells behave in these different 
experimental systems allows judgements to be made as to 
their suitability for use in musculoskeletal TE. Clearly 
scaffolds that support the biological functions of the cells 
that they are intended to ‘host’ in vivo are the most likely 
candidates to progress through to further assessment. 
However, there is a danger that TE solutions that become too 
complicated become difficult to manage in a clinical setting 
and too expensive for routine use. 

 

3. Pre-Clinical/Animal Model Testing 

 Evaluating the effectiveness of scaffolds in the treatment 
of musculoskeletal pre-clinical problems is difficult, as, 
despite the large number of in vivo and in vitro models 
described in the literature, no ‘industry standard’ models 
have yet been adopted within which systems can be tested 
[63]. In addition to the wide variety of models available in 
which to test a scaffold, multiple confounding factors affect 
the interpretation of results. For example, the age of the test 
subject and of tissue donors [64, 65]; different natural 
healing rates in similar structures e.g. the ACL heals poorly 
following damage compared to the medial collateral 
ligament (MCL) [66]; differences in natural healing biology 
in, for example full thickness cartilage defects (good 
healing) compared to partial thickness defects (poor healing) 
[67, 68]. 

 When considering pre-clinical models of musculoskeletal 
damage/repair one must question which is the ideal model to 
replicate the human situation [63]. An example of the 
difficulties encountered when choosing an optimal animal 
model to test a TE scaffold based solution is in the treatment 
of osteochondral defects. Lesions in the distal femoral 
condyle of the knee (‘stifle’) are probably the most 
commonly used model defect in pre-clinical osteochondral 
scaffold studies but the thickness of the cartilage at this site, 
compared to man, varies considerably between species. In 
man the distal femoral cartilage is reported to be 2.2mm in 
depth with 2% chondrocyte volume density (CVD); of the 
commonly used species in pre-clinical studies the horse is 
most similar to man (2mm depth, 6-7% CVD) with the rabbit 
(a very commonly used pre-clinical study species) being 
very dissimilar (0.2-0.4mm depth, 2-12% CVD) [63]. 
However, whilst equine cartilage can be considered the most 
similar to human, preclinical equine studies are expensive, 
specialist and subject to strict welfare controls. Thus many 
research groups use smaller ‘large animals’ such as sheep, 
goat and pigs, which are easier and cheaper to source and 
maintain to assess scaffold performance in vivo. However, 
many scaffolds are evaluated in vivo in small animal models, 
particularly rabbits and rodents. There are significant 
complications in the interpretation of results in these species. 
Rodents are fundamentally different from large animal and 
human cartilage in that they do not close their growth plates 
even at maturity and thus have very different chondrocyte 
subpopulations compared to large animals/humans. Indeed 
rodent and rabbit cartilage defects naturally heal very rapidly 
and thus the results of scaffold performance in these animals 
must be considered in light of these differences – any 
scaffold in these species will perform well. 

4. Clinical Trials 

 TE scaffold based solutions that are demonstrated to have 
positive effects on repair and regeneration both in vitro and 
in pre-clinical trial are then often taken forward into clinical 
(patient) trials. However, given the relative novelty of this 
field of research, there is a paucity of information currently 
available on the performance of TE scaffold based solutions. 
Once again, difficulties arise as there is currently no ‘gold 
standard’ for the evaluation of tissue repair. For example, in 
chondral and osteochondral repair a number of techniques to  
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evaluate tissue repair have been described by research and 
clinical groups worldwide. These techniques use a variety of 
scoring systems including radiographic/MRI, second-look 
arthroscopy and clinical outcome measures. At the current 
time, these evaluation techniques show that many of the 
scaffold based repair systems in commercial use have 
efficacy for the treatment of cartilage lesions in the short and 
medium term [23, 69], however there is little comparative 
data available. 

SCAFFOLDS OF THE FUTURE 

 The development of scaffolds containing nanomaterials 
[70] is an interesting development in scaffold technology. 
Nanomaterials can mimic the architecture of the normal 
extracellular matrix (ECM) (which contains both nano and 
microfibers), which is likely to be very important in 
encouraging the cellular component of the TE construct to 
behave in a biologically appropriate fashion [71]. Nanofibers 
provide high surface area-to-volume ratios, increasing the 
contact area between cells and fibres and offering huge 
potential to deliver substances such as drugs [72] or growth 
factors [73] into an area of repair or regeneration [74]. 
However, the increased pore size and porosity of many 
nanofibres may lead to inferior mechanical properties 
compared to micro- or macro-fibres [75]. In order to address 
these concerns, further engineering of nanoparticle based 
scaffolds has been performed, for example aligning the 
nanofibres within the scaffold [76, 77] or producing 
nanofibre mats with programmed fibre direction [75]. These 
alterations have been shown to be beneficial to cellular 
growth and function in vitro and may be required to enhance 
their use in tissue regeneration. Just as nanofibres can be 
utilized to provide drug/protein delivery systems, other 
scaffolds can also be modified to further enhance their TE 
credentials. Scaffolds can be coated with growth factors such 
as fibroblastic growth factor-2 (FGF-2) [78, 79] and bone 
morphogenic proteins (BMPs) [79-81] with or without other 
bioactive molecules [82]. They can also be made more 
‘sticky’ by, for example, coating them with the RGD (Arg-
Gly-Asp) cell attachment site [83] to encourage the adhesion 
of the target cells. Possibly one of the most exciting 
developments is the design and production of self-
assembling natural peptide nanofibre scaffolds that can be 
used alone or with other scaffolds to enhance tissue repair 
[84, 85]. These nanofibre scaffolds can be genetically 
engineered to contain specific peptides designed specifically 
for the target tissue, for example, osteogenic growth protein 
and osteopontin cell adhesion motif for designer bone repair 
scaffolds [86]. 

CONCLUSION 

 Biological and synthetic based material scaffolds have an 
integral role in the potential application of musculoskeletal 
tissue engineering. As newer materials and technologies 
evolve, the pre-clinical testing will be of utmost importance 
before they can be utilized in widespread clinical use. 
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