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Abstract: Background: Autoclaving, heat, irradiation or chemical detergents are used to disinfect autografts, allografts 

and biomaterials for tissue reconstruction. These methods are often associated with deterioration of mechanical, physical, 

and biological properties of the bone grafts and synthetic implants. High hydrostatic pressure has been proposed as a 

novel method preserving biomechanical and biological properties of bone, tendon and cartilage. This is the first study to 

assess the inactivation of clinically relevant bacteria on biomaterials and human bone by high hydrostatic pressure. 

Methods: Bacterial suspensions of Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecium, implants 

covered with infected blood, human bone infected in vitro, and biopsies of patients with chronic osteomyelitis were sub-

jected to different protocols of high hydrostatic pressure up to 600 MPa. Bacterial survival after high hydrostatic pressure 

treatment was determined and compared with bacterial growth in untreated controls. 

Results: S. aureus and P. aeruginosa in suspension were completely inactivated by high hydrostatic pressure (> 5log lev-

els), whereas E. faecium showed barotolerance up to 600 MPa. Blood and adherence to metal implants did not signifi-

cantly alter inactivation of bacteria, and complete disinfection was achieved with barotolerant bacteria (S. aureus and P. 

aeruginosa). However, osteoarthritic bone demonstrated a non-homogeneous baroprotective effect, with single bone sam-

ples resistant to treatment resulting in unaltered bacterial growth, and complete disinfection of artificially infected bone 

specimens was achieved in 66% for S. aureus, 60% for P. aeruginosa and 0% for E. faecium. Human bone samples of pa-

tients with chronic osteomyelitis could be completely disinfected in 2 of 37 cases. 

Conclusion: High hydrostatic pressure offers new perspectives for disinfection of sensitive biomaterials and bone grafts, 

and contamination by blood did not significantly affect bacterial inactivation rates. However, a significant baroprotective 

effect was demonstrated in bone. Effectiveness is currently limited to colonization and / or infection with barosensitive 

micro-organisms. 
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INTRODUCTION 

 Regeneration and reconstruction of human organs and 
tissue defects is one of the central challenges in modern medi-
cine. There is a wide variety of different approaches to fill 
bone and joint defects, including tissue engineering, allograft 
transplantation, reimplantation of extracorporally treated auto-
grafts, or implantation of synthetic biomaterials. A major 
drawback of all reconstruction modalities is infection, thus  
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requiring some kind of prophylaxis. Irradiation, autoclaving 
and chemical detergents are commonly used for disinfection 
of biomaterials and bone transplants, and might even allow 
reimplantation of infected or tumour-afflicted tissue after 
sterilisation. These conventional methods, however, severely 
alter biomechanical and biological properties of bone trans-
plants [1-3]. Accordingly, there is an urgent clinical demand 
for alternative ways of treating contaminated human tissue and 
sterilization-sensitive biomaterials prior to implantation. 

 High hydrostatic pressure (HHP) as a means of food 
processing has been examined intensively for more than 100 
years [4]. As most vegetative forms of micro-organisms are 
impaired by hydrostatic pressure in the range of 300-600 
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MPa, non-thermal inactivation of bacteria, yeasts, and 
moulds present in food such as jams, fruit juices, and dress-
ings is now well-established. Furthermore, HHP proved a 
relatively mild disinfection method protecting taste and ap-
pearance of treated comestibles [4]. 

 Recently, Diehl and co-workers have shown HHP to be a 
promising approach in orthopaedic surgery as well. Inactiva-
tion of normal tissue and various tumour cells could be dem-
onstrated [5-7], with pressure levels leaving biomechanical 
properties of human bone, articular cartilage or tendon grafts 
unchanged [8-10]. Furthermore, no immunhistochemical 
changes were detectable in HHP treated tendon tissue [8], 
and biological activity of extracellular bone matrix proteins 
also remained unaffected [11]. 

 Until now, HHP has not been introduced in the medical 
field for the disinfection of human tissue or heat-, gas-, or 
radiation-sensitive biomaterials. In this regard, the objective 
of the study was to assess HHP inactivation of clinically 
relevant bacteria on biomaterials and in human bone tissue 
under physiological conditions. Furthermore, different 
treatment protocols for maximum bacterial inactivation rates 
were evaluated in clinically oriented models. The hypothesis 
was that HHP is capable to completely disinfect both bacte-
rial suspensions, as well as metallic implants and infected 
bone specimens. 

MATERIALS AND METHODS 

Preparation of Bacteria 

 Reference strains of Enterococcus faecium (ATCC 
6057), Staphylococcus aureus (ATCC 25923) and Pseudo-
monas aeruginosa (ATCC 27853) were used for the in vitro 
studies. A methicillin resistant strain of S. aureus (MRSA 
27065) isolated from a deep arthroplasty infection was also 
subjected to HHP treatment. Bacteria were cultured to late 
logarithmic growth phase in trypticase soy broth (TSB) at 37 
°C overnight before testing. Bacterial cells were then washed 
twice in phosphate buffered saline, resuspended in normal 
saline (NaCl 0.9 %) and adjusted to 5 x 10

7
 cfu/ml by densi-

tometry with McFarland standard (cfu = colony forming 
units). 

Hydrostatic Pressure Treatment 

 HHP treatment was realised by a custom-made HHP 
device (RECORD Maschinenbau GmbH, Königssee, Ger-
many) with temperature control. Pliable sample vials of a 
volume of 15 ml were completely filled with incubation fluid 
and vacuum sealed within a plastic foil to prevent implosion 
and leakage during pressure application. Pressurisation and 
decompression was performed with an average rate of 10 
MPa/s and water used as transmission fluid. Pressure and 
temperature were continuously measured and regulated 
automatically during the HHP plateau time. 

HHP Treatment of Bacterial Suspensions 

 Susceptibilities of suspended E. faecium ATCC 6057, S. 
aureus ATCC 25923 and P. aeruginosa ATCC 27853 to-
ward HHP were determined (n = 5 for each group). In brief, 
bacterial suspensions of 10

5
 cfu/ml were prepared as de-

scribed above and subjected to 600 MPa at 20°C for 10 min. 

Untreated suspensions served as a control (n = 5). Hereafter, 
serial aliquots of both test and control suspensions diluted 
with normal saline were plated on blood agar plates and 
incubated at 37°C. The number of cfu was quantified after 
48 hours. 

HHP Disinfection of Human Osteomyelitic Bone 

 Bone biopsies from patients with chronic osteomyelitis or 
infected total joint arthroplasties that were gained during 
operative debridement were subjected to HHP treatment for 
proof-of-principle. Informed consent was obtained from all 
patients, and only bone specimens that had to be excised for 
surgical debridement were taken for the present investiga-
tion. To simulate a worst-case scenario, bacteria within the 
infected bone samples were enriched and incubated to sta-
tionary growth phase prior to pressure application. A total of 
71 bone biopsies were obtained for HHP treatment in 21 
operations (12 patients, mean age 67 years [range 25 - 78]). 

 Specimens were immediately placed in sterile Ringer´s 
solution in the operation theatre, transported to the labora-
tory on ice, transferred to TSB and incubated for 5 days at 37 
°C. Thereafter, bacterial outgrowth was verified and the 
infecting bacteria were determined by standard microbiolog-
ical techniques. Bone specimens with negative bacterial 
culture were discarded. Samples were exposed to HHP 
treatment under aseptic conditions as described above (for 
treatment parameters see Table 1). At least one specimen of 
each operation served as a control and was not exposed to 
HHP. After pressure application, bone samples were trans-
ferred to sterile TSB and incubated for 5 days at 37 °C for 
assessment of bacterial survival. 

Table 1. Bone Specimens of Patients with Osteomyelitis were 

Obtained, Incubated and Subjected to High Hydro-

static Pressure (HHP, 20°C, 30 min) 

 

Bacteria  

Pre-Treatment 

HHP  

[MPa] 

Samples After  

HHP (Sterile/Total) 

S. aureus 450 0 / 7 

S. aureus 600 1 / 17 

S. aureus & CNS 600 0 / 3 

CNS 600 0 / 6 

Escherichia coli 300 0 / 2 

Escherichia coli 600 1 / 2 

Table 1 shows the isolated micro-organisms and results after pressure treatment.  

CNS = coagulase negative staphylococci. 

 

HHP Treatment of Contaminated Biomaterial Surfaces 

 To determine the effectiveness of HHP for disinfection of 
contaminated biomaterials, a standard testing protocol modi-
fied after a national guideline was developed [12]. In brief, 
carefully cleaned and sterilized screws of stainless steel 
(DIN 84, standard size 6x20 mm) were used as substrates. 
Inoculum concentrations were adjusted to 10

6
 cfu/ml in defi-

brinized blood of adult sheep. Sterile screws were com-
pletely immersed in the infected blood for at least 1 minute 
and finally dried in Petri dishes at 37 °C for 24 hours. 
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 Prior to treatment with HHP, the infected screws were 
placed in pliable plastic vials completely filled with 15 ml of 
TSB. The specimens were kept on ice before and after HHP 
treatment. Sample size was n = 5 for each experiment dis-
played in Table 2, and untreated screws served as a control. 

 After pressure application, all screws were treated with 
ultrasound (55 kHz, Sonorex RK255H, Bandelin electronic, 
Berlin, Germany) for 7 min to remove adherent micro-
organisms, and serial dilutions of the bacterial suspensions 
were plated on blood agar plates. Finally, cfu were quanti-
fied after 48 hours of incubation at 37 °C. 

HHP Treatment of Artificially Infected Bone Specimen 

 Human femoral heads of three patients receiving a total hip 
arthroplasty due to aseptic osteoarthritis were used for the in 
vitro bone infection model after informed consent was ob-
tained. Average age was 69 years (44-71). The femoral heads 
were explanted and stored at -20 °C until examination. After 
defrosting at room temperature, bone cylinders with a diame-
ter of 11 mm and a length of 10 mm were prepared from the 
specimens with a hollow drill under aseptic conditions. 

 Bacterial suspensions with an inoculum concentration of 
10

5
 cfu/ml were prepared in TSB as described above. Bone 

cylinders were incubated in 5 ml of the bacterial suspension 
for 24 hours at 37 °C, transferred to sterile plastic vials filled 
with 15 ml of TSB, and subjected to HHP treatment. Bone 
specimens of the different test groups were either infected 
with S. aureus ATCC 25923, E. faecium ATCC 6057 or P. 
aeruginosa ATCC 27853. Thereafter, pressure levels of 600 
MPa were applied for 10 min, 30 min or six five-minute 
intervals at 37 °C (n = 5 for each series). 

 After HHP treatment, the bone samples were transferred to 
10 ml of TSB and incubated for 24 hours to determine bacte-
rial growth (37 °C). Serial aliquots were taken, plated on 
blood agar plates and quantified after incubation for another 
24 hours. If no bacterial growth was detected, incubation of 
the bone samples was prolonged until a total incubation period 
of 5 days was reached to assure disinfection (37 °C). 

Statistical Analysis 

 Means and standard deviations were determined when-
ever applicable. Statistical analysis was performed with 

Mann-Whitney-Test with P < 0.05 considered significant. 

RESULTS 

HHP Treatment of Bacterial Suspensions 

 Bacterial growth of all suspended strains was signifi-
cantly reduced after HHP treatment compared to the un-
treated control (P < 0.05). Both S. aureus ATCC 25923

 
and 

P. aeruginosa ATCC 27853
 
were completely inactivated by 

10 min of 600 MPa, corresponding to a reduction of bacterial 
growth of at least 5 logarithmic levels. E. faecium ATCC 
6057

 
on the other hand proved high barotolerance, and 

growth was only reduced to 62 ± 4 % of the control group. 

HHP Disinfection of Human Osteomyelitic Bone 

 Results of HHP treatment of osteomyelitic bone are dis-
played in Table 1. Microbiological work-up revealed mono-
infections in all cases. Nine samples did not show bacterial 
growth after enrichment and were discarded prior to HHP 
treatment. Finally, 62 specimens from 12 different patients 
were evaluated. Twenty-five samples served as a control, 2 
were treated with 300 MPa, 7 were treated with 450 MPa 
and 28 samples were treated with 600 MPa (30 min; 20°C). 
Disinfection was achieved in 2 of the 37 treated specimens. 
All control samples showed positive bacterial growth. 

HHP Treatment of Contaminated Biomaterial Surfaces 

 Bacterial growth on standard screws after HHP is dis-
played in Fig. (1). Growth of E. faecium ATCC 6057 was 
not inhibited significantly by HHP treatment up to 600 MPa 
(P > 0.05). S. aureus ATCC 25923 and MRSA 27065 on the 
other hand showed a significant reduction of growth with 
increasing pressure levels (P < 0.01). After applying 400 
MPa, only single colony forming units of both strains sur-
vived, and complete disinfection was achieved with 600 
MPa (Fig. 1). 

 After modification of the treatment protocol, bacterial 
inactivation by HHP was even improved. As demonstrated 
for S. aureus ATCC 25923, both reduction of the treatment 
temperature in the pressure device to 4 °C as well as length-
ening of the pressure plateau to 30 min significantly in-
creased bacterial inactivation at 300 MPa (P < 0.05). Com-
plete inhibition of staphylococcal growth was already ob-

Table 2. Treatment Parameters for the Application of HHP to Disinfect Stainless Steel Screws 

 

Exp. Bacterial Strain Pressure Levels [MPa] Temperature [°C] Pressure Time [Min.] 

1 S. aureus ATCC 25923 0, 200, 300, 400 20 10 

2 S. aureus ATCC 25923 0, 200, 300, 400 4 10 

3 S. aureus ATCC 25923 0, 200, 300, 400 4 30 

4 S. aureus ATCC 25923 0, 200, 300, 400 20 30 

5 MRSA 27065 0, 200, 300, 400 20 10 

6 E. faecium ATCC 6057 0, 200, 300, 400 20 10 

7 S. aureus ATCC 25923 0, 200 20 30 

8 S. aureus ATCC 25923 0, 200 20 6 x 5 
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tained with 300 MPa at 4°C or after 30 min of HHP, whereas 
400 MPa and more were necessary for disinfection with a 10 
min pressure plateau at 20 °C (Fig. 2). 

HHP Treatment of Artificially Infected Bone Specimen 

 Antibacterial action of HHP in bone was evaluated after 
treatment with 600 MPa. Interestingly, some bone samples 
demonstrated unaffected bacterial growth after HHP (“non-

responder”), whereas others were disinfected by HHP appli-
cation (“responder”). Thus, results showed a high standard 
deviation. 

 Good antibacterial effectiveness of HHP could be dem-
onstrated for S. aureus and P. aeruginosa, and the majority 
of bone specimens infected with these micro-organisms were 
completely disinfected (Fig. 3). Disinfection was achieved in 
66 % of bone samples infected with S. aureus, and in 60 % 

-1

0

1

2

3

4

5

0 100 200 300 400 500 600 700

HHP [MPa]

c
fu

 [
lo

g
1
0
]

E. faecium

MRSA

S.aureus

 

Fig. (1). Inactivation of different bacterial strains on stainless steel screws by high hydrostatic pressure (10 min, 20 °C). Colony forming 

units (cfu) after treatment are shown in logarithmic levels. 
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Fig. (2). Growth inhibition of Staphylococcus aureus ATCC 25923 on stainless steel screws by high hydrostatic pressure with different 

treatment protocols. Colony forming units (cfu) after treatment are shown in logarithmic levels. 
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of samples infected with P. aeruginosa. However, HHP 
failed to significantly reduce bacterial growth in single sam-
ples. Consequently, standard variations were high and no 
significant differences were observed between HHP treated 
and untreated control group (P > 0.05). E. faecium again 
demonstrated high barotolerance. No sample was completely 
disinfected though viable bacteria were also reduced in some 
specimens. There was no significant difference in antibacte-
rial effectiveness between the different treatment protocols 
(P > 0.05), and neither prolongation of treatment nor iterat-
ing pressure application did overcome the baroprotective 
effect originated by the surrounding bone. 

DISCUSSION 

 Disinfection of infected autografts, allografts and bioma-
terials for therapy of bone defects is often associated with 
deterioration of mechanical, physical and biological proper-
ties. HHP technology is suggested as a novel approach, now 
being in preclinical testing with the aim to disinfect grafts 
and implants, and to inactivate both micro-organisms and 
tumour cells in resected tissue segments. By leaving the 
biomechanical and biological properties of bone, cartilage 
and tendons intact, HHP could improve quality of allografts 
and might even allow reimplantation of bone segments of 
patients with osteomyelitis or tumours after extracorporal 
HHP disinfection. 

Antibacterial Effects of HHP 

 In the pressure range of biotechnological interest, hydro-
static pressure has in general no effect on covalent bonds. 
Therefore, natural compounds such as flavours, aromas, and 
dyes are not destroyed by HHP at room temperature. Nucleic 

acids also proved pressure resistant because their secondary 
structure is mainly stabilised by hydrogen bonds that are 
almost pressure insensitive. However, transcription and 
translation were reported to be regularly influenced by HHP 
[13]. The main targets of HHP seem to be membrane sys-
tems leading to an increased permeability of membranes and 
cell walls [14]. Shigehisa et al. reported an increased perme-
abilisation of bacterial cell walls by HHP followed by an 
elevated discharge of cytoplasmatic RNA [15], and mem-
brane leakage after HHP treatment leading to increased in-
tracellular staining was shown by Benito et al. [16]. Changes 
in membrane fluidity similar to those observed with thermal 
treatment and inactivation have been reported as well [17], 
and may explain the interactions of pressure and tempera-
ture. After adjustment of treatment parameters, successful 
inactivation of bacteria, moulds, yeasts, viruses and even 
bacterial spores has been described [18]. 

 Results of our present study with suspended and surface-
adherent bacteria confirmed the significant variations in 
pressure susceptibility reported in the literature even within 
bacterial species [16, 19], and results obtained for specific 
strains should therefore not be widely generalised. Both 
barosensitive and barotolerant strains had been selected. P. 
aeruginosa and S. aureus could be completely inactivated in 
suspension, whereas growth of E. faecium was only reduced 
by 38% even at HHP as high as 600 MPa. These differences 
in barotolerance were also reproduced with bacteria adhering 
to implants and bone. Although the molecular mechanisms 
of barotolerance have not been completely discovered, it is 
well renown that gram positive strains - like E. faecium - are 
generally more barotolerant than gram negative strains [23, 
24]. Furthermore, single strains have shown barotolerance up 
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Fig. (3). Bacterial growth of S. aureus ATCC 25923, E. faecium ATCC 6057 and P. aeruginosa ATCC 27853 after high hydrostatic pressure 

treatment of infected bone specimens with different protocols (600 MPa, 37 °C). Values are displayed in logarithmic levels of colony form-

ing units (cfu) after HHP application. 
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to pressure levels of more than 1000 MPa [29]. In our study, 
the investigated strain of E. faecium that has been reported to 
be very heat resistant [12] has also demonstrated extraordi-
nary pressure tolerance. 

Influence of Media, Additives and Treatment Parameter 

on Bacterial Inactivation by HHP 

 Various investigations demonstrated that additives within 
the treatment media may have significant influence on bacte-
rial barotolerance [20, 21]. In order to apply HHP for disin-
fection of bone and biomaterials, it is inevitable to proof 
uninhibited antibacterial effectiveness also in the presence of 
organic residua like proteins and blood. Thus, microbiolog-
ical assays were performed with bacteria embedded in blood 
on screws, and with infected bone. 

 Our results provide evidence that blood does not alter 
bacterial inactivation by HHP compared to suspensions in 
TSB. In addition to these findings, we were able to demon-
strate that both decreasing treatment temperature and pro-
longing pressure application allowed complete inactivation 
of S. aureus on contaminated screws already at decreased 
pressure levels (Fig. 2). As expected, susceptibility of E. 
faecium was not altered by the different treatment protocols 
up to 600 MPa of HHP (Fig. 1). Our results are thus in ac-
cordance with previously published data, demonstrating 
temperature levels above 50°C and below 5°C to increase 
bacterial inactivation by HHP [4, 19, 22]. Ludwig et al. ex-
plained the important influence of treatment temperature on 
the antibacterial effectiveness of HHP by changes in the 
membrane composition rendering bacteria more or less sen-
sitive towards HHP [23]. Influence of temperature on inacti-
vation again varies significantly between the different bacte-
rial strains [24]. 

HHP Disinfection of Bone 

 Femoral heads from patients with aseptic osteoarthritis, 
which are commonly used as allogeneic bone grafts, were 
infected in vitro and subjected to HHP to assess the influence 
of heterogeneous bone with areas of necrosis and sclerosis 
on the antibacterial effectiveness of HHP. Interestingly, the 
heterogeneous constitution of the bone specimens was re-
flected by an enormous variation of bacterial inactivation by 
HHP. Various bone specimens could be completely disin-
fected, whereas others proved resistant to treatment with 
unaffected bacterial growth (Fig. 3). Histological and bio-
chemical parameters of the different bone samples were not 
correlated to the inactivation rates in the present work and 
should be addressed in future studies. 

 Apart from the in vitro experiments, we were able to 
demonstrate that HHP is also capable to reduce bacterial 
growth in human osteomyelitic bone ex vivo. However, 
complete disinfection of the human bone specimens was 
only achieved in 2 out of 37 samples. “Worst case scenar-
ios’’ have been simulated in the test assay with enrichment 
of the infecting micro-organisms prior to HHP application. 
After the enrichment period, a very high bacterial load was 
reached with most bacteria in stationary phase being less 
susceptible to HHP [25]. Thus, pressurisation can be ex-
pected to be more effective if applied directly to the micro-
biota of the collected specimens. 

 Our findings clearly indicate that bone can protect em-
bedded bacteria from HHP, since S. aureus and P. aerugi-
nosa were reproducibly inactivated in suspension and in 
blood, but not in bone. An explanation for the baroprotective 
effect of bone might be a lack of water molecules, which are 
known to enhance the pressure effect, and water was less 
present in the examined dry bone samples compared to bac-
terial suspensions. The influence of different bone constitu-
ents on HHP inactivation of micro-organisms might also 
play an important role and has been studied for other rea-
sons. An increased fat content is typical for degenerative 
bone diseases. However, Gervilla et al. did not observe any 
baroprotective effect of the fat content within the treatment 
medium on pressurised bacteria [26]. Different results have 
been reported for sugars like sucrose [27] and divalent 
cations. Especially Ca

+
 demonstrated a dose-dependent 

baroprotective effect [28]. 

 We anticipate that HHP can be established as a disinfec-
tion method to reduce viability of barotolerant micro-
organisms on heat-, gas- and radiation-sensitive biomaterials. 
Although bacteria were effectively eradicated in single in-
fected specimens, HHP failed to safely disinfect both in-
fected bone samples as well as infected metal implants. An-
tibacterial efficacy can be increased with elevated pressure 
levels and adjusted treatment temperature. Indications might 
however be limited to mono-infections with barotolerant 
bacteria. Contamination of screws with infected blood had 
no influence on bacterial inactivation by HHP, compared to 
the same bacteria in suspension. Disinfection of bone al-
lografts, however, was significantly limited by a baroprotec-
tive effect of bone tissue, and the underlying mechanisms of 
these specimens resistant to therapy have to be addressed in 
further studies. 
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