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Abstract: Skeletal defects resulting from trauma, tumors, or abnormal development frequently require surgical treatment
to restore normal tissue function. To overcome the limitations associated with conventional surgical treatments, several
tissue engineering approaches have been developed. In particular, the use of scaffolds enriched with stem cells appears to
be a very promising strategy. A crucial issue in this approach is how to control stem cell behavior. In this respect, the ef-
fects of growth factors, scaffold surface characteristics, and external ‘active’ loading conditions on stem cell behavior
have been investigated. Recently, it has become clear that the stiffness of a scaffold is a highly potent regulator of stem
cell differentiation. In addition, the stiffness of a scaffold affects cell migration, which is important for the infiltration of
host tissue cells. This review summarizes current knowledge on the role of the scaffold stiffness in the regulation of cell
behavior. Furthermore, we discuss how this knowledge can be incorporated in scaffold design which may provide new

opportunities in the context of orthopedic tissue engineering.
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INTRODUCTION

Skeletal defects as a result of injury or disease form a
significant problem in health care with major socioeconomic
impacts. Considering bone defects, traditional treatment mo-
dalities often use autograft and allograft cancellous bone.
While these surgical treatments have increased the quality of
life for many patients they have some important limitations.
The use of autografts may be limited by scarceness of donor
tissue and may cause donor site morbidity associated with
infection, pain, and hematoma [1-6]. In addition, harvesting
autografts requires a second surgical procedure, potentially
increasing the risk of complications and cost of treatment.
Allograft bone introduces the risk of host rejection and infec-
tion [7-11] and may also suffer from a limited supply. Resto-
ration of cartilage and ligaments with autografts and al-
lografts largely suffer from the same limitations.

Tissue engineering has been heralded as an alternative
treatment strategy that may circumvent the problems associ-
ated with autograft and allograft procedures. Early tissue
engineering approaches have used a variety of a-cellular
scaffolds, including synthetic scaffold materials fabricated
from hydroxyapatite, tricalcium phosphate ceramics, metal
alloys, and various polymers such as polylactic acid (PLA)
and polyglycolic acid (PGA) [12-15]. Furthermore, natural
scaffolds consisting of extracted extracellular matrix (ECM)
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proteins such as collagen and fibrin have been used for tissue
engineering (reviewed in [16]). The function of these a-
cellular scaffold materials is to provide mechanical stability
at the defect site, to stimulate the ingrowth of cells from
healthy residual tissues in situ, and to guide the complex
process of tissue formation.

A new generation of tissue engineering approaches in-
corporates the use of cells, which are seeded onto a scaffold
to enhance the efficacy of tissue regeneration [17, 18]. The
basic idea in this approach is to harvest cells from a patient,
to seed these cells onto a scaffold material, and to subse-
quently implant the cell-seeded scaffold into the patient. The
cells should produce the new tissue while the scaffold mate-
rial gradually disintegrates, leaving no harmful traces in the
body.

Stem cells appear to be one of the most promising cell
types to use in engineering applications. A central issue in
the utilization of stem cells is how to pursue the stem cells to
differentiate into the desired lineage and to restore tissue
function. Unfortunately, there is not a simple answer to this
question since stem cell differentiation is a highly complex
and multi-factorial process. In vivo, stem cells are subjected
to a complex array of biophysical and biochemical signals.
These signals are processed and ‘integrated’ by the stem
cells to regulate stem cell differentiation (Fig. 1).

It has long been appreciated that soluble biochemicals
such as growth factors, cytokines, and chemokines affect the
morphogenesis of skeletal tissues. For example, growth fac-
tors from the TGFb superfamily notably the bone morphoge-
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Fig. (1). Stimuli affecting stem cell differentiation. Stem cell differ-
entiation is affected by soluble factors, biochemical cell-matrix
interactions, and mechanical stimuli. Mechanical stimuli can be
subdivided in ‘active’ and ‘passive’. The ‘active’ forces are external
mechanical forces acting on a scaffold during normal activity. The
stiffness of a scaffold is a key ‘passive’ mechanical cue that affects
stem cell differentiation.

netic proteins (BMPs) are highly potent stimulators for
skeletal tissue formation (reviewed in [19-24]). Furthermore,
ECM proteins such as collagens, glycosaminoglycans, and
proteoglycans provide instructive messages to cells that are
transmitted across the cell membrane via the transmembrane
receptors that recognize these ECM proteins. These cell-
ECM interactions influence cell behavior either directly or
through crosstalk with growth factors [25-29]. Furthermore,
stem cells have been shown to respond to external mechani-
cal loading (reviewed in [30-32]). For skeletal tissues, these
‘active’ external mechanical forces are required to maintain
normal cell function [33-35]. Physical properties of a scaf-
fold can also influence cell behavior. Examples include sur-
face characteristics such as roughness [36-38], micro- and
nano-topography [39, 40], surface energy [37], and porosity
[41-44].

Only recently, it has been appreciated that also the stiff-
ness of the ECM is a highly potent regulator of stem cell
behavior [45-47]. The stiffness of the ECM acts as a ‘pas-
sive’ mechanical cue that tends to be more selective than
soluble factors [47]. This review briefly describes how cells
sense the stiffness of a scaffold and discusses the role of the
scaffold stiffness in regulating cell behavior. In addition, the
influence of scaffold stiffness on cell behavior in combina-
tion with biochemical stimuli is considered. Finally, scaffold
stiffness is discussed as an opportunity to control cell behav-
ior in the context of skeletal tissue engineering.

SUBSTRATE STIFFNESS

Cells receive mechanical feedback from the substrate to
which they adhere, even in the absence of externally applied
forces. Here, ‘substrate’ refers to any material to which cells
adhere, for example the ECM, a scaffold, or a culture flask.
In recent years, researchers have been extensively investigat-
ing the role of the stiffness of a substrate as one of the key
parameters that affects cell behavior. A key motivation for
these studies was that cells in vivo often encounter a rela-
tively soft environment, whereas conventional tissue culture
flasks are very rigid. This led to the development of 2D in
vitro model systems which use polymer gel substrates with
tunable elastic properties that are coated with specific ECM
proteins for cell attachment. In particular, polyacrylamide
gels have been widely used because these gels can be tuned
within a wide range of stiffness that mimic those of in vivo
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tissues (reviewed in [46, 48-51]). An essential characteristic
of these in vitro ECM mimics is that the effects of substrate
stiffness and substrate biochemistry on cell behavior can be
independently studied. Commonly chosen stiffness values
for the PA gels are in the range of ~0.5 kPa (brain tissue),
~10 kPa (muscle tissue), and >30 kPa (pre-mineralized bone)
[46]. These gels are often referred to as ‘soft’, ‘intermediate
stiff’, and ‘stiff’.

Cell Probing of Substrate Stiffness

Mechanotransduction is the process by which cells con-
vert mechanical stimuli into a chemical response [52]. This
plays an essential role in the probing of matrix stiffness and
is currently subject of extensive research. It is beyond the
scope of this review to provide a detailed description of the
highly complex signaling cascades involved in mecha-
notransduction. Instead, we focus on a basic understanding
of how cells probe the stiffness of a substrate. For a more
detailed explanation we refer the reader to recent reviews on
this topic [45, 53-57]. Cells bind to a substrate with trans-
membrane molecules called integrins, which have an ex-
tracellular domain that attaches to the substrate and an intra-
cellular domain that connects to the cytoskeleton (Fig. 2).
When cells bind to the ECM, integrins begin to cluster,
which leads to the recruitment of structural and signaling
proteins to form so-called focal adhesions at the site of in-
tegrin clustering. The formation and maturation of focal ad-
hesions requires the application of mechanical forces to these
adhesions. Cells can actively generate these forces them-
selves using actin-myosin complexes which are part of their
cytoskeleton. This is where substrate stiffness comes into
play. On a hard substrate, cells generate large forces which
leads to the formation of mature focal adhesions and a highly
organized cytoskeleton with abundant stress fibers [45, 58].
In contrast, a soft substrate cannot provide enough resistance
to counterbalance large, cell-generated forces. Therefore, on
soft substrates cells do not develop abundant stress fibers
and generate smaller forces. In other words, a cell responds
to differences in substrate stiffness and adjusts its ‘muscu-
loskeletal system’ (i.e. the cytoskeleton) appropriately.
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Fig. (2). Schematic representation of a cell which has attached to a
substrate. Cells attach to a substrate with transmembrane molecules
called integrins. When cells bind to a substrate, integrins begin to
cluster which leads to the formation of focal adhesions (FA). The
maturation of focal adhesions requires the application of mechani-
cal forces (F) to these adhesions which can be generated by the
cytoskeleton.

Changes in cytoskeletal organization are important, be-
cause the cytoskeleton is involved in many signaling path-
ways that transfer mechanical feedback into chemical re-
sponses. Furthermore, the cytoskeleton also determines the
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shape of a cell, which in turn is intimately connected to cell
behavior (reviewed in [56, 59]). This was clearly demon-
strated by cell biophysicist Christopher Chen and co-workers
who showed that cell morphology can regulate differentia-
tion of stem cells [60]. This group cultured stem cells on
adhesive islands with different sizes to force stem cells to
adopt a particular cell shape. On small islands, cell spreading
was impaired due to space limitations, whereas cells nor-
mally spread on larger islands. In culture medium containing
both adipogenic and osteogenic differentiation factors, it was
found that cells became adipocytes on the small islands but
committed to the osteogenic linecage on the large islands
[60]. In other words, when these cells received culture me-
dium supporting both osteogenic and adipogenic differentia-
tion, the cell shape determined their fate. Even more intrigu-
ing, when cells were cultured on large islands in adipogenic
medium, the cells still became osteogenic; vice versa, cells
on small islands in osteogenic medium still became adipo-
genic. Thus, cell shape could drive stem cell differentiation
and overrule the instructive messages provided by soluble
differentiation factors. The cytoskeleton, in the form of ac-
tin-myosin generated tension proved to be essential in the
stem cell commitment process.

Substrate Stiffness and Cell Behavior

Since substrate stiffness influences the cytoskeletal orga-
nization, it also affects cell morphology. Various studies
indicated that stiffer substrates generally promote cell
spreading, whereas soft substrates induce a more rounded
cell shape (Fig. 3 and refs. [58,61,62]). From the above, it is
not surprising that these changes in cell morphology are ac-
companied by changes in cell behavior, including cell differ-
entiation. Discher and co-workers showed that muscle pre-
cursor cells optimally differentiate into myotubes on sub-
strates with a stiffness that mimics that of muscle tissue [63,
64]. In addition, this group demonstrated that substrate stift-
ness can control the differentiation of stem cells [47]. Naive
mesenchymal stem cells were shown to specify lineage and
commit to phenotypes with extreme sensitivity to substrate
stiffness. Soft gels that mimic brain tissue are neurogenic,
stiffer matrices that mimic muscle tissue are myogenic, and
rigid gels prove osteogenic. During the initial week of cultur-
ing, reprogramming of these lineages is possible with the
addition of soluable induction factors, but after several
weeks in culture, the cells commit to the lineage specified by
matrix stiffness [47].

Apart from changes in cell differentiation, the substrate
stiffness also affects cell migration. This is important for the
ingrowth of cells from host tissues, for example for the vas-
cularization of a scaffold. It was reported that normal rat
kidney epithelial cells and fibroblasts migrate faster on softer
substrates compared to stiff substrates [49], whereas vascular
smooth muscle cells showed maximal migration on interme-
diate stiff substrates [65]. It was demonstrated that these ef-
fects are mediated by changes in focal adhesion formation
and myosin-generated forces [49]. Furthermore, when fibro-
blasts were cultured on a substrate with a soft and a stiff
side, they preferred migrating into the direction of the stiff
side (a phenomenon called ‘durotaxis’) [66]. Considering
tissue formation, it was shown that fibroblasts merge to form
tissue-like structures on soft substrates whereas these cells
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migrated away from one another on stiff substrates [67].
Similar behavior was observed for epithelial cell lines and
explants from neonatal rat hearts. The driving force behind
this merging of cells on soft substrates is a combination of
weak adhesions and myosin II contraction [67].

Soft (2.1 kPa)  Stiff (68 kPa)

Fig. (3). Fibroblasts cultured in our lab on ‘soft’ and ‘stiff” poly-
acrylamide gels coated with collagen I, four hours after plating. On
a soft gel, cells adopted a round morphology whereas these cells
spread on stiff gels.

Substrate stiffness also influences cell growth and viabil-
ity. For example, osteoblasts showed increased proliferation,
motility, and deposition of mineral on hard surfaces com-
pared to soft substrates [68]. Importantly, the responses to
substrate stiffness are different for normal and oncogenic
cells. Non-transformed fibroblasts showed a decrease in the
rate of DNA synthesis and an increase in the rate of apopto-
sis on soft substrates [69]. In contrast, transformed cells
maintained their growth and apoptosis characteristics regard-
less of substrate rigidity. This indicates that feedback from
substrate stiffness is required for proper regulation of cell
growth and survival.

In the polyacrylamide gel system, cells are attached to a
substrate as depicted in Fig. (2). This means that the cell
only attaches to a substrate on one side, thus experiencing a
two-dimensional (2D) situation. Recently, the effect of sub-
strate stiffness on cell behavior was studied in three-
dimensional (3D) model systems [70-72], whereby cells are
embedded in a gel consisting of ECM proteins. These 3D in
vitro model systems provide a better representation of the 3D
extracellular environment that cell encounter in vivo [59, 73].
A drawback, however, is that it is difficult to independently
control substrate stiffness and ECM biochemistry in these
3D systems. It appeared that matrix stiffness plays an impor-
tant role in modifying cell behavior also in a 3D environ-
ment. For example, smooth muscle cell morphology was
much rounder in stiff compared to soft 3D ECM analogs
[71]. Interestingly, there can be important differences in cel-
lular responses between 2D and 3D culture models. For ex-
ample, the migration of human prostate cancer cells in 2D
and 3D were shown to exhibit diametrically opposite behav-
iors [74].

In summary, current data demonstrate that substrate stiff-
ness affects essential cell behavior including differentiation,
migration, and growth. The ‘musculoskeletal system’ of the
cell, i.e. the cytoskeleton, plays a crucial role in translating
feedback from the substrate stiffness into cell behavior.
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Substrate Stiffness and Biochemical Factors

Only few studies investigated the combined effects of
biochemical and biophysical factors on cell behavior. As
already mentioned, cell shape and substrate stiffness can
supersede biochemical signaling under certain conditions
[47, 60]. In addition, soluble induction factors appear to be
less selective than matrix stiffness in driving stem cell dif-
ferentiation, and cannot reprogram stem cells that were pre-
committed for weeks on a matrix with a certain stiffness
[47]. On the other hand, a ‘correct’ substrate stiffness and
soluble induction factors can combine to induce a more
complete cell differentiation [47]. Considering substrate
stiffness and ligand density (i.e. the availability of attach-
ment sites), it was found that smooth muscle cells spread
maximally on intermediate ligand densities on stiff sub-
strates [62]. However, on soft substrates these cells were
relatively insensitive to ligand density and showed a more
rounded morphology [62]. Stimuli induced by specific ECM
proteins also appear to be dependent on the stiffness of a
substrate. It was found that collagen V, an ECM protein that
is highly expressed during tissue development and repair,
modifies cell morphology and migration on substrates with a
tissue-like stiffness, but not on hard substrates (R.G.M.
Breuls, submitted).

OPPORTUNITIES FOR SKELETAL TISSUE ENGI-
NEERING

The ECM integrates many functions including the provi-
sion of structural support, attachment sites for cell surface
receptors, and a reservoir for signaling molecules [75]. For a
successful tissue engineering approach the complex tasks of
the ECM need to be taken over by a scaffold material, which
outlines the challenges for a scaffold designer. While it is
virtually impossible to mimic the full complexity of the natu-
ral ECM, one may attempt to incorporate the most essential
features in a scaffold. The stiffness of a scaffold appears to
be one of these key variables.

Mechanical Properties of a Scaffold

When focusing on the mechanical properties, a scaffold
should be strong enough to withstand the loads that act on a
skeletal tissue at the defect site. Furthermore, the stiffness is
important because it affects the strains acting on a cell while
being attached to a scaffold [76]. For example, an extremely
stiff titanium scaffold will clearly not transfer external loads
to cells because it will not deform under physiologic loading
conditions. However, the influence of mechanics on cell be-
havior is not limited to external loading. Even in the absence
of external loads, the stiffness of a scaffold is important for
the regulation of cell behavior.

Since substrate stiffness affects many different processes,
such as cell growth, migration, and differentiation, it is diffi-
cult to provide a general guideline for a suitable scaffold
stiffness that optimally stimulates tissue regeneration. Never-
theless, to optimally promote stem cell differentiation, cur-
rent knowledge suggests that the scaffold stiffness should
match the in vivo stiffness of the skeletal tissue under con-
sideration. It is important to emphasize that a scaffold should
probably exhibit the stiffness of a developing skeletal tissue,
which might be lower than the stiffness of a mature tissue.
To promote the invasion of the scaffold with cells from sur-
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rounding host tissue, a stiffer scaffold might be more favor-
able [66]. This may set conflicting requirements for the scaf-
fold stiffness with respect to stem cell differentiation and
invasion of host cells.

Scaffold Surface Biochemistry

Since substrate stiffness and biochemical stimuli interact
to determine cell behavior, both parameters need to be con-
trolled in scaffold design. Natural polymers such as collagen
provide ligands for cell binding, however, the mechanical
properties of these natural polymers are difficult to control.
Synthetic polymers on the other hand generally offer the
advantage of better control over the material properties but
may require additional treatment to incorporate specific cell
binding sites. By determination of the specific amino acid
sequences of natural proteins that cells bind to, researchers
were able to mimic cell binding sites in custom made peptide
sequences that can be incorporated in synthetic scaffolds [77,
78]. Therefore, latest trends in scaffold design have been
focusing on incorporating spatially well-defined cell binding
sites in synthetic materials [79-82]. Such synthetic mimics of
natural ECM materials have already been successfully ap-
plied for the regeneration of bone defects in rats [83, 84].

Utilization of Scaffold Stiffness in Tissue Engineering
Applications

Most research on the use of stem cells in skeletal tissue
engineering applications have relied on bone marrow derived
stem cells. The use of stem cells extracted from bone mar-
row may require culturing of the stem cells in vitro in order
to enrich and expand the stem cell population. Such proce-
dures are costly and quality insurance in the clinical setting
may be difficult to achieve. Cell culturing on conventional
hard tissue culturing flasks might introduce another problem,
however, since these hard materials can induce an undesired
preconditioning of the stem cells as a consequence of an in-
appropriate stiffness [47]. Therefore, it might be useful to
consider expansion of cells on substrates with a stiffness that
compares to the stiffness of native tissue. However, cells
may not proliferate on soft substrates that mimic native tis-
sue. The problem is that cells either proliferate or synthesize
matrix and differentiate at high rates. Stiff substrates seem to
enhance proliferation, whereas soft substrates are more dedi-
cated to differentiation.

The introduction of alternative sources for stem cells
such as the adipose-derived stem cells may allow for a dif-
ferent approach that solves this problem [85, 86]. Adipose-
derived stem cells can be obtained in relative large quanti-
ties, which circumvents the need for cell culturing [87-89].
This has led to the formulation of a so-called one-step surgi-
cal procedure that avoids in vitro cell culturing [90]. In this
procedure, stem cells are harvested form the patient, imme-
diately seeded onto a scaffold, and implanted into the pa-
tient, all in a single surgical procedure. In this approach, an
appropriate scaffold may circumvent undesired pre-
conditioning of stem cells and, ideally, provide biochemical
and mechanical stimuli that support the process of stem cell
differentiation.

Generally speaking, most synthetic polymers that are
currently used in orthopedic practice are stiff materials with
elastic moduli in the range of ~3 to 2000 MPa [91]. This
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suggests that these polymers could be suboptimal to stimu-
late stem cell differentiation, in particular for softer tissues.
The latest trend, however, is that polymers such as PLA are
used to create loosely packed fibrous meshes that have a
much lower stiffness [92-98]. As a consequence, the cells
‘feel’ a relative low stiffness when they are embedded in
these fibrous meshes. This opens up exciting new opportuni-
ties with these FDA-approved biodegradable materials. The
tissue engineer may fabricate a scaffold with a stiffness that
is suitable to promote the desired cell behavior. This might
be the stimulation of cell proliferation, differentiation, or
even the migration of host cells, depending on the specific
requirements in situ. Obviously, a vast amount of research is
needed to further investigate the effects of substrate stiffness
in combination with other variables such as pore size in the
context of these fibrous meshes.

CLOSING REMARKS

Recently, the proof of concept of stem cell based ap-
proaches in orthopaedics has been demonstrated in animal
models. However, at present, only very few studies on hu-
mans exists [99-101], which had only limited success [17].
Possibly, a better understanding of the complex multi-
factorial process regulating stem cell behavior may lead to
the often anticipated breakthrough in tissue engineering. This
review focused on the importance of the stiffness of a scaf-
fold in tissue engineering applications. Scaffold stiffness can
guide stem cell differentiation and affects cell migration, the
latter being important with respect to cell infiltration from
host tissues. Although biochemical stimuli are clearly very
important in the regulation of cell behavior, it has become
clear that a scaffold with an inappropriate stiffness may frus-
trate the process of tissue regeneration. On the other hand, a
scaffold with a well-chosen stiffness can stimulate the regen-
eration of new tissue and enhance the efficacy of biochemi-
cal stimuli. Thus, the scaffold stiffness may be an important
variable to control stem cell behavior which provides new
opportunities for tissue engineering.
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